7.1 Types of Radiation

Who first identified the 3 most common types of radiation?

particles: positively charged atomic particles. They consist of 2 protons and 2 neutrons. They are the most massive type of radiation particle.

_____ particles move quite slowly. As a result,

The greek letter alpha looks like this:

So our symbol will be:

It has the same number of protons and neutrons as most

atoms so sometimes it is written like a

_____ atom: _____

Because an alpha particle has 2 protons and no electrons, alpha

particles have a _____ charge.

When alpha decay occurs, the original atom loses 2 protons (and 2 neutrons). *As a result, it becomes a*

Example equation:

nortialas: a	nortiala ia
particles: a an electron. It has some mass but not a lot.	
particles move more quickly t	han alpha. As
a result they have penetrating p	power.
The greek letter beta looks like this:	
So our symbol will be	
Wait a minute! Why does an electron have an atomi 1? It's because the electron is "created" by breaking neutron into a proton and an electron (beta decay). T stays in the nucleus, changing the atomic number and	g down a Γhe proton
atom something new. Ex: Iodine becomes	!
Because beta particles are electrons, they have a charge.	
Example equation	
particles: a high energy, short wavelength radiation. It is not rea	particle is
ingh chergy, short wavelength radiation. It is not rea	any made of

any type of particle.

radiation is super high energy, so it has the greatest penetrating power of all forms of radiation. It can

penetrate most things. A dense substance (like _____

or _____) will eventually stop it, but it needs to be thick enough (several cm thick).

The greek letter gamma looks like this: _____

So our symbol will be _____

Gamma radiation does not involve the removal of any particles, so

the atomic number and atomic mass will_____.

Gamma radiation is not made of any particles, so there isn't any_____.

If a particular atom is "extra energized" (that is, it has absorbed a lot of energy) it will sometimes release that energy as gamma

radiation. We use the symbol ______ to indicate an atom with that extra energy.

Example equation:

Gamma decay can also happen without that extra energy:

A chemical equation for a nuclear reaction is called a nuclear equation. It follows the same rules as chemical equations such as:

1.

(law of conservation of mass)

2.

(see total atomic number)